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magnetic fields within the biaxial substrate can be written in their equations in terns o0 1. (as shown in A h1w.t exhoie hp exRiic
compact forms as sion is written below

V ([/l-' V X E) - k E 0 (2a) c(,, a; A* sin x-) B ! o5n

V x ([- - V x H) - kk21 " t 0, (2b) with (-y ) denoting the propagation constant of fields in the i n

where the relative [i) and [p) were previously defined in (1), and itropic region I along the t direction, A ad B:
to the modal amnplitudes of I-, and w being the angular frequeric,,k,, is the free-space wave number. The propagation constanl•ts • naty be obtained by solvimg a fourtih

The Fourier transform of -ny field component within the housing Tre crat ation for ithe ortand by pressadoin
is defined via the following integral relation order characteristic equatio)n for either P, or P:, and cxprcsscj ýn

terms of a, j3, as well as the medium parameters of the substtate

b/2 The fields inside the isotropic region 2 can be derived with the
F(x, a) = E12 F(x. y) e'J" dy (3a) help of the potential theory In general, the governing equaton~s

for the two potential functions within this region can be written o)
a = (2n - 1)/b (3b) terms of 0"' which denote the potential functions for the TM and

with a being the discrete Fourier transform variable and with b TE modes, respectively (5).

being the dintension of the broad sidewall of the waveguide. When By applying the boundary conditions at the air-anisotropic layer

(2a) and (2b) are simplified, they can be reduced to a set of scalar interface, ie., at x = h, a set of matrix equations can be obtained.

coupled differential equations for t, and E, which are given by which yields an expression for the admittance Green's function
giver below

I I +~a h ,(, )+Y3a),h '
dx' Yi d, dx IY')YI,)L~h~)j 1~~~

+ yi(x, a) = 0 (4a)
d 2 (X, 1 00 dRx,,r) (X.0whose individual matrix elements are defined by

dx2  + z, dx + z 2 R,(X, oa) + Z3  dx ?,(t•a, j3) = + {-z,1 + 4,* (bh)

+ z4E,,(x, a) = 0 (4b) ?r,(a, 6) = f,÷: + (•,v' - JEI, *' 1!)0 (6c0

with all coefficients appearing above defined as Pt (or. 6) = f7 ÷ 2 + ( bZ,1i + - t k6 '}/t 1 1  (6d)

-t a2 ,/Xe,.) ?k*2a~ 6) = E1v2 + {-E2ý3** + 4146* )/Ej (6e)

Y2 = - a 2 f a(j / 2 Lz-z + k-2 ,zz ý, (4d) = cot ('r h1). (6g)

14= = cot (1 h&. (6h)

y = ( + 14,{c ,,- + k(./fz )} (4e) The remaining constants appearing above, namely • to . can be

- related to constants multiplying the sine and cosine terms in field
expressions inside the anisotropic and isotropic regions, as shown

{k = - (a) (4f) in [8] and I1I1.
AU,.,, I{a 2 + 02(A,•l•,y) k t~ue }To find the propagation constant, 3. for the slot line, a Galerkin

procedure similar to that of 191-]1]) is used to first expand the
Y. = 0 0 z { - (s.. f/is ) (4g) electric field components F. and 9, within the slot in terms of known

_ _ _ _., basis functions [I i ]_ After the basis functions are substituted back

into (6a). and approprate inner products are performed, Parseval's
Z1= a (4h) theorem is applied to obtain a final set of algebraic matrix equations

(C, {c 2 
+ 22k./u,) - whose determinant contains 0.

Z2= - a 2(jr,/,i) - 0'(Ez/ ) (4i) For the microstrip and edge coupled lines, a similar approach to
the one used for tho grounded slotline is implemented as well Ex-.

-A, ja 2( (4ý) cept that in this case, the impedance Green's function and the cur-
+- ko2 ,1.if} rent basis functions on the metal strips are used instead. Notice that

the edge coupled line is capable of supporting both even and odd

'= (4k) modes. Therefore, appropriate choices for ar. J. and J, must be
, made accordingly during the computation of the propagation con-

stant 
[71.

2_ _ (41)
-+Ot/i" III. RrsUtTrs

where 0 is the propagation constant in the z-direction. To verify the theory presented in this paper, dispersive charac-
To find the solution for either .0, or P. (4a) and (4b) can be teristics of the edge coupled microstrip line on a boron nitride sub-

decoupled yielding a fourth order differential equation for either strate with F, : 3 14,. f, ( - 5 12, p,, p tA,, - I 0 are
component of the electric field. The remaining field components in computed and compared to the available results published in the
the planar anisotropic region are then obtained from Maxwell's literature The physical dimensions of the guiding strncture are
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Fig I.Diserson urss ( - ) o th ede cupld lne rined In Fig. 2. Effective dielectric constant versus angle of the slotline (in PTlFF
born itrdewit ,~.4 e ~-5.2, 512,b .5 mIt .5 cloth (e 2.45, ej 2.89, e3 - 2.95-) and Glass cloth (1 6 24.

mmn, h2  3.0 mm, - 1.5 Dim, and S 3.0 mm..........---data ~,6.64, ej 5.56.----), with it = MY I.- .5 m
computed by this method 00 data reproduced from 17.51m.I, 331m, n .54m~a rquni~ a

40 GIliz, (b) 30 Gllz, and (c) 20 0h~z.

taken tobe b =8.5 mm, hl 1.5 mm, h12 3.0 mm, w -~1.5

min, and S = 3.0 mm. Fig. I shows the normalized propagation 3.0-------1 .

constant t3 01lk.) plotted as a function ofthe rotation angle varying It1

from 00 to 90* at frequencies of 10 and 20 GF~z. Alongside the 2.J ---
results computed by the method presented here are also the results hji ubtrt

from reference [7]; and as can be clearly seen, a good agreement
between them is observed.

The effects of misalignment on the dispersive properties of trans-
mission lines printed on biaxial substrates are studied next. The
two chosen materials are the PTFE cloth and glass cloth. For the ~~
PTFE cloth when its principal axes are aligned with those of the 22...

waveguide, the material parameters characterizing the substrate are
2.45, e 2 = 2.89, e3 = 2.95, and y_, = p,,, = pu. 1.0; while 0 to 20 30 0 506 0 09

for the glass cloth, they are given by f I = 6.24, t2 =6.64, f ANG-LE IN DEGR9EES~

5.56, and A. = 1,= =I.0. Fig. 2 shows the response of the Fig. 3. Effective dielectric constant versus angle of the microstnip on PTFE
effective dielectric constant of the grounded slotline printed on the cloth with (eI= 2.45. e, 2.89. t = 2.95 )and Glass cloth (f
PTFE cloth and glass cloth, respectively. The physical dimensions 6.. 664 556 )wih plb 1.
of the structure used in computations are b = 3.555 mm, hl ni,--=05mh-1. m n . m;a rqece a
0.254 mm, h2 =3.301 mmn, and w =0.254 mm with the data 40Hz b30han(c20G.
calculated for angles of axes rotation changing from 00 to 90". at
three different frequencies. The dispersion curves follow a specific
trend, indicating that as the frequency increases to 40 GH7., (,i
increases correspondingly. An interesting observation can also be S 3.m

made by examining this figure more closely. It is apparent that even 4-2.u

though e~f for the glass cloth is much laijer titan the one belonging S 1.- o

to the PTFE cloth the percentage of variation in tf of the former P1.
due to the rotation angle is noticeably lower than for the latter .

Such behavior can probably be attributed to the fact that the diag-
onal elements of the permittivity tensor for the glass cloth air tnearly 0
equal. IEVEN4 MODIE

Fig. 3 displays the results for tlte microstrip line whet ilte same IontD MODEF

cloth materials are used aIs Substrates, with the dimensions of the 61'0
0 it, 20 10 40 so 0 (1B09

structure given by b =12.7 mni. h, -. 0.5 mm, hz , 12.2 fitm, ANGLE IN DEGcREES

and w = 0.5 mm. Once again, all coImputations were carried out F~ig 4. Effective dielectric. constant versus -.ngile oIt the edpe colupledl line
at frequencies of 20 to 40 GHz, and the behavior of tl is showing tin l'TFF cloth with t, 2 45,. t h 2.89, t, - 2 9S.i, ,,, z _ itp

similar behavior patterns to those seen earlier for the slotline, in- 1 0. b 7 0 11113. ht,. 1) S 11111. 1t 0. Dim (I 1111 ) S min, aid --0

cluding the lower sensitivity of tire effective dielectric constant to1
angles of rotation for the glass cloth substrate

The propagation properties of the edge coupled line on thre PTFF suits, it ts apparent that it s tire spacing between thte Sirip" tocreases.
cloth are examined next. The samoe permittivity tensor paramteters fobr both mo3(de% approlachies the sante tititt . 0ricli impieIs that
((I, fl, f~) are employed again with the pertinent dimensions oif the thre two molides are essentiatlly hecorniug degenerate:
structure given by b -7 0 mm., ht -- 0 5 trim, h7 = 3.0 mil. and hFtnalli . to illustrate hoit. the tensor eletientit itt thle petnicabilitt.
w = 0.5 mmn. Fig.. 4 illustrate% tire response tf'iffo to the roltattion wii~uld change the elleitise' itndex of refraction rttiikr the ritttirtain
of the principal axes of tire PTII:. cloth (t% it function of tire strip oil the peniiiittttsits tetisti. nulnerit al resuilt% tor the tilit rtlstip
spacing S) for odd and even mnittles, respectively . From file%(, re pritettd on at subistra~te ithat is luitraivter tid Iti tioth its t

ttj ti.1l [. I
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TV. CONCLUSION

An analysis based on the spectral-domain method was applied to Abstrari-The nite-difference method is used in t analysis of the
propagation chat teristics or an infinite array of angular dielec-

study the effects of misalignment between the principal axes of the tric waveguides. icular attention is devoted to be mode coupling
substrate and those of the waveguide on the dispersive properties analysis and a corn rison with resuilts from integral equation
of grounded slotlines, microlstrips, and edge coupled lines printed method is presented. v wave equation is solv a terms of the trans.
on anisotropic substrates. The newly derived expression for the verse components or I magnetic field, ing in an tigenvalue
Green's function is written explicitly in terms of both (4EI and I A problem with the etimi ion of spurious m es. T[he formulaition is

general and may be appl' o thesolution of her problems, including
tensor elements, with the off-diagonal elements of the permnittivity those with anisotropic diel rics and with continuous variation of
also included in the formulation. The dispersion characteristics of the index of refraction profille n tbe wave de cross section.
these transmission lines are examined when they are printed on
dielectrically biaxial substrates. Numerous results are provided for
different medium parameters for frequencies up to040.0 0Hz when 1. INTR U ION

angles of axes rotation of the permittivity tensor change from 0" The practical application of die ctric waveguide in millimet'r
* to 900. Also, the variation in the index of refraction is examined wave and optical integrated circui . epends critically on the prop

for a inicrostrip line printed on a substrate which is characterized agation characteristics of these ave uides. For this reason. there
* simultaneously by both its permittivity and permeability tensors It has been increased interest in eth of determining these char

is observed that misalignment effects on the dispersion properties actcnstics for practical die ctru. w eguiding stnuctures I he
of M IC's cannot be ignored, even at the lower frequencies for some point-matching method was used to ana yze the iwo- layer reciati

anisotroic subsrate maerials.gular cross section wave ide [fl- The se of the finit-lrrn
method became atiracti after the clim ation of the spurlioui'
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